Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Prog Neurobiol ; 219: 102364, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36244613

RESUMO

Hippocampal adult neurogenesis is involved in many memory processes from learning, to remembering and forgetting. However, whether or not the stimulation of adult neurogenesis is a sufficient condition to improve memory performance remains unclear. Here, we developed and validated, using ex-vivo electrophysiology, a chemogenetic approach that combines selective tagging and activation of discrete adult-born neuron populations. Then we demonstrated that, in rats, this activation can improve accuracy and strength of remote memory. These results show that stimulation of adult-born neuron activity can counteract the natural fading of memory traces that occurs with the passage of time. This opens up new avenues for treating memory problems that may arise over time.


Assuntos
Memória de Longo Prazo , Neurogênese , Ratos , Animais , Neurogênese/fisiologia , Memória de Longo Prazo/fisiologia , Memória/fisiologia , Hipocampo/fisiologia , Aprendizagem/fisiologia
2.
Mol Psychiatry ; 26(12): 7130-7140, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34526669

RESUMO

The dentate gyrus is one of the only brain regions that continues its development after birth in rodents. Adolescence is a very sensitive period during which cognitive competences are programmed. We investigated the role of dentate granule neurons (DGNs) born during adolescence in spatial memory and compared them with those generated earlier in life (in embryos or neonates) or during adulthood by combining functional imaging, retroviral and optogenetic tools to tag and silence DGNs. By imaging DGNs expressing Zif268, a proxy for neuronal activity, we found that neurons generated in adolescent rats (and not embryos or neonates) are transiently involved in spatial memory processing. In contrast, adult-generated DGNs are recruited at a later time point when animals are older. A causal relationship between the temporal origin of DGNs and spatial memory was confirmed by silencing DGNs in behaving animals. Our results demonstrate that the emergence of spatial memory depends on neurons born during adolescence, a function later assumed by neurons generated during adulthood.


Assuntos
Giro Denteado , Memória Espacial , Animais , Giro Denteado/fisiologia , Neurônios/fisiologia , Ratos , Memória Espacial/fisiologia
3.
Nat Commun ; 12(1): 1778, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33741954

RESUMO

Memory reconsolidation, the process by which memories are again stabilized after being reactivated, has strengthened the idea that memory stabilization is a highly plastic process. To date, the molecular and cellular bases of reconsolidation have been extensively investigated particularly within the hippocampus. However, the role of adult neurogenesis in memory reconsolidation is unclear. Here, we combined functional imaging, retroviral and chemogenetic approaches in rats to tag and manipulate different populations of rat adult-born neurons. We find that both mature and immature adult-born neurons are activated by remote memory retrieval. However, only specific silencing of the adult-born neurons immature during learning impairs remote memory retrieval-induced reconsolidation. Hence, our findings show that adult-born neurons immature during learning are required for the maintenance and update of remote memory reconsolidation.


Assuntos
Aprendizagem/fisiologia , Consolidação da Memória/fisiologia , Memória de Longo Prazo/fisiologia , Neurônios/fisiologia , Animais , Proteína 1 de Resposta de Crescimento Precoce/genética , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hipocampo/citologia , Hipocampo/fisiologia , Masculino , Aprendizagem em Labirinto/fisiologia , Microscopia Confocal , Neurônios/metabolismo , Biossíntese de Proteínas/genética , Biossíntese de Proteínas/fisiologia , Ratos Sprague-Dawley , Fatores de Tempo
4.
Aging Cell ; 19(8): e13161, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32599664

RESUMO

During aging, some individuals are resilient to the decline of cognitive functions whereas others are vulnerable. These inter-individual differences in memory abilities have been associated with differences in the rate of hippocampal neurogenesis measured in elderlies. Whether the maintenance of the functionality of neurons generated throughout adult life is linked to resilience to cognitive aging remains completely unexplored. Using the immediate early gene Zif268, we analyzed the activation of dentate granule neurons born in adult (3-month-old), middle-aged (12-month-old), or senescent (18-month-old) rats (n = 96) in response to learning when animals reached 21 months of age. The activation of neurons born during the developmental period was also examined. We show that adult-born neurons can survive up to 19 months and that neurons generated 4, 10, or 19 months before learning, but not developmentally born neurons, are activated in senescent rats with good learning abilities. In contrast, aged rats with bad learning abilities do not exhibit activity-dependent regulation of newborn cells, whatever their birthdate. In conclusion, we propose that resilience to cognitive aging is associated with responsiveness of neurons born during adult life. These data add to our current knowledge by showing that the aging of memory abilities stems not only from the number but also from the responsiveness of adult-born neurons.


Assuntos
Neurônios/metabolismo , Animais , Envelhecimento Cognitivo , Masculino , Ratos
5.
Hippocampus ; 25(11): 1472-9, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25913775

RESUMO

Adult neurogenesis occurs in the dentate gyrus (DG) of the hippocampus, which is a key structure in learning and memory. Adult-generated granule cells have been shown to play a role in spatial memory processes such as acquisition or retrieval, in particular during an immature stage when they exhibit a period of increased plasticity. Here, we demonstrate that immature and mature neurons born in the DG of adult rats are similarly activated in spatial memory processes. By imaging the activation of these two different neuron generations in the same rat and by using the immediate early gene Zif268, we show that these neurons are involved in both spatial memory acquisition and retrieval. These results demonstrate that adult-generated granule cells are involved in memory beyond their immaturity stage.


Assuntos
Giro Denteado/fisiologia , Rememoração Mental/fisiologia , Neurogênese/fisiologia , Neurônios/fisiologia , Memória Espacial/fisiologia , Fatores Etários , Animais , Giro Denteado/citologia , Proteína 1 de Resposta de Crescimento Precoce/genética , Masculino , Neurônios/citologia , Ratos , Ratos Sprague-Dawley
6.
Hippocampus ; 25(11): 1314-26, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25740272

RESUMO

New dentate granule cells (GCs) are generated in the hippocampus throughout life. These adult-born neurons are required for spatial learning in the Morris water maze (MWM). In rats, spatial learning shapes the network by regulating their number and dendritic development. Here, we explored whether such modulatory effects exist in mice. New GCs were tagged using thymidine analogs or a GFP-expressing retrovirus. Animals were exposed to a reference memory protocol for 10-14 days (spaced training) at different times after newborn cells labeling. Cell proliferation, cell survival, cell death, neuronal phenotype, and dendritic and spine development were examined using immunohistochemistry. Surprisingly, spatial learning did not modify any of the parameters under scrutiny including cell number and dendritic morphology. These results suggest that although new GCs are required in mice for spatial learning in the MWM, they are, at least for the developmental intervals analyzed here, refractory to behavioral stimuli generated in the course of learning in the MWM.


Assuntos
Comportamento Animal/fisiologia , Fenômenos Fisiológicos Celulares/fisiologia , Giro Denteado/citologia , Aprendizagem em Labirinto/fisiologia , Neurogênese/fisiologia , Neurônios/fisiologia , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL
7.
Brain Struct Funct ; 220(2): 645-61, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24510284

RESUMO

New neurons are continuously produced in the adult dentate gyrus of the hippocampus, a key structure in learning and memory. It has been shown that adult neurogenesis is crucial for normal memory processing. However, it is not known whether neurons born during the developmental period and during adulthood support the same functions. Here, we demonstrate that neurons born in neonates (first postnatal week) are activated in different memory processes when they are mature compared to neurons born in adults. By imaging the activation of these two different neuron generations in the same rat and using the IEG Zif268 and Fos, we show that these neurons are involved in discriminating dissimilar contexts and spatial problem solving, respectively. These findings demonstrate that the ontogenetic stage during which neurons are generated is crucial for their function within the memory network.


Assuntos
Giro Denteado/crescimento & desenvolvimento , Giro Denteado/fisiologia , Memória/fisiologia , Neurogênese , Neurônios/fisiologia , Fatores Etários , Animais , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Feminino , Masculino , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Sprague-Dawley , Memória Espacial/fisiologia
8.
Zoology (Jena) ; 117(1): 57-63, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24290785

RESUMO

Most investigations on tetrapod locomotion have been concerned with limb movements. However, there is compelling evidence that the axial musculoskeletal system contributes to important functions during locomotion. Adult salamanders offer a remarkable opportunity to examine these functions because these amphibians use axial undulations to propel themselves in both aquatic and terrestrial environments. In this article, we review the currently available biological data on axial functions during various locomotor modes in salamanders. We also present data showing the modular organisation of the neural networks that generate axial synergies during locomotion. The functional implication of this modular organisation is discussed.


Assuntos
Atividade Motora/fisiologia , Fenômenos Fisiológicos do Sistema Nervoso , Urodelos/fisiologia , Animais , Fenômenos Biomecânicos , Meio Ambiente , Locomoção , Rede Nervosa/fisiologia
9.
Biol Cybern ; 107(5): 545-64, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23430277

RESUMO

Vertebrate animals exhibit impressive locomotor skills. These locomotor skills are due to the complex interactions between the environment, the musculo-skeletal system and the central nervous system, in particular the spinal locomotor circuits. We are interested in decoding these interactions in the salamander, a key animal from an evolutionary point of view. It exhibits both swimming and stepping gaits and is faced with the problem of producing efficient propulsive forces using the same musculo-skeletal system in two environments with significant physical differences in density, viscosity and gravitational load. Yet its nervous system remains comparatively simple. Our approach is based on a combination of neurophysiological experiments, numerical modeling at different levels of abstraction, and robotic validation using an amphibious salamander-like robot. This article reviews the current state of our knowledge on salamander locomotion control, and presents how our approach has allowed us to obtain a first conceptual model of the salamander spinal locomotor networks. The model suggests that the salamander locomotor circuit can be seen as a lamprey-like circuit controlling axial movements of the trunk and tail, extended by specialized oscillatory centers controlling limb movements. The interplay between the two types of circuits determines the mode of locomotion under the influence of sensory feedback and descending drive, with stepping gaits at low drive, and swimming at high drive.


Assuntos
Locomoção/fisiologia , Modelos Biológicos , Robótica , Urodelos/fisiologia , Animais , Cibernética , Extremidades/fisiologia , Retroalimentação Sensorial/fisiologia , Rede Nervosa/fisiologia , Natação/fisiologia
10.
J Neurophysiol ; 104(5): 2677-92, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20810687

RESUMO

The rhythmic and coordinated activation of axial muscles that underlie trunk movements during locomotion are generated by specialized networks in the spinal cord. The operation of these networks has been extensively investigated in limbless swimming vertebrates. But little is known about the architecture and functioning of the axial locomotor networks in limbed vertebrates. We investigated the rhythm-generating capacity of the axial segmental networks in the salamander (Pleurodeles waltlii). We recorded ventral root activity from hemisegments and segments that were surgically isolated from the mid-trunk cord and chemically activated with bath-applied N-methyl-d-aspartate (NMDA). We provide evidence that the rhythmogenic capacity of the axial network is distributed along the mid-trunk spinal cord without an excitability gradient. We demonstrate that the burst generation in a hemisegment depends on glutamatergic excitatory interactions. Reciprocal glycinergic inhibition between opposite hemisegments ensures left-right alternation and lowers the rhythm frequency in segments. Our results further suggest that persistent sodium current contributes to the rhythmic regenerating process both in hemisegments and segments. Burst termination in hemisegments is not achieved through the activation of apamine-sensitive Ca(2+)-activated K(+) channels and burst termination in segments relies on crossed glycinergic inhibition. Together our results indicate that the basic design of the salamander axial network is similar to most of axial networks investigated in other vertebrates, albeit with some significant differences in the cellular mechanism that underlies segmental bursting. This finding supports the view of a phylogenetic conservation of basic building blocks of the axial locomotor network among the vertebrates.


Assuntos
Locomoção/fisiologia , Rede Nervosa/fisiologia , Neurônios/fisiologia , Pleurodeles/fisiologia , Medula Espinal/fisiologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Eletrofisiologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Locomoção/efeitos dos fármacos , N-Metilaspartato/farmacologia , Rede Nervosa/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Periodicidade , Riluzol/farmacologia , Medula Espinal/efeitos dos fármacos
11.
Proc Natl Acad Sci U S A ; 107(17): 7963-8, 2010 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-20375283

RESUMO

Neurogenesis in the hippocampus is characterized by the birth of thousand of cells that generate neurons throughout life. The fate of these adult newborn neurons depends on life experiences. In particular, spatial learning promotes the survival and death of new neurons. Whether learning influences the development of the dendritic tree of the surviving neurons (a key parameter for synaptic integration and signal processing) is unknown. Here we show that learning accelerates the maturation of their dendritic trees and their integration into the hippocampal network. We demonstrate that these learning effects on dendritic arbors are homeostatically regulated, persist for several months, and are specific to neurons born during adulthood. Finally, we show that this dendritic shaping depends on the cognitive demand and relies on the activation of NMDA receptors. In the search for the structural changes underlying long-term memory, these findings lead to the conclusion that shaping neo-networks is important in forming spatial memories.


Assuntos
Dendritos/fisiologia , Hipocampo/citologia , Aprendizagem/fisiologia , Neurônios/citologia , Percepção Espacial/fisiologia , Análise de Variância , Animais , Imuno-Histoquímica , Masculino , Testes Neuropsicológicos , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...